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Abstracts 
 
Based on the elastic network model, we develop a novel method that predicts the conformational 
change of a protein complex given its initial state crystal structure together with a small set of 
pair-wise distance constraints for the end state. The predicted conformational change, which is a 
linear combination of multiple low frequency normal modes that are solved from the elastic 
network model, is computed as a response displacement induced by a perturbation to the system 
Hamiltonian that incorporates the given distance constraints. For a list of test cases, we find that 
the computed response displacement overlaps significantly with the measured conformational 
changes, when only a handful of pair-wise constraints are used (≤10). The performance of this 
method is also shown to be robust against different choices of pair-wise distance constraints and 
errors in their values. This method, if supplied with the experimentally derived distance 
constraints (for example, from NMR or other spectroscopic measurements), can be applied to the 
analysis of protein conformational changes toward transient states. 
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Introduction 
 
Quantitatively correct description of conformational changes is central to the understanding of 
functional mechanisms for many bio-molecular complexes. Such description is routinely 
obtained by doing structural comparison between the two crystal structures solved for the initial 
state and the end state, respectively. In case that only the initial state crystal structure is known, 
computational prediction of the conformational changes is highly desirable. However, simulating 
the conformational changes with atomic details is made difficult by its requirement of long time 
simulation up to µs ~ ms time scale. Recent work by a number of researchers has suggested 
another computational route that avoids this difficulty: the lowest-frequency normal modes that 
are computed from a highly simplified elastic network model (ENM), can give surprisingly good 
description of the functionally relevant dynamics of macromolecular systems (Atilgan et al., 2001, 
Isin et al., 2002, Keskin et al., 2002, Kim et al., 2002, Kundu and Jernigan, 2004, Xu et al., 2003, 
Zheng and Brooks, 2005). Many biologically interesting dynamical transitions were found to be 
dominated by just a handful of lowest-frequency normal modes (Delarue and Sanejouand, 2002, 
Tama and Sanejouand, 2001, Zheng and Doniach, 2003). However, without knowing both the 
initial and the end structures in the first place, it is still elusive to pinpoint the relevant modes 
from the low-frequency spectrum: in many cases, the most relevant mode may not be the lowest-
frequency mode; sometimes two or more modes are almost equally relevant. Therefore, it is 
desirable to ‘predict’ the conformational change by computing a linear combination of multiple 
low frequency normal modes as a good approximation. To achieve this task, we need additional 
structural information about the end state in addition to the crystal structure for the initial state. In 
a recent study (Tama et al., 2004), Tama and coworkers used a linear combination of low-
frequency normal modes for flexible fitting of high-resolution structures into low-resolution 
maps of macromolecular complexes from electron microscopy. Here we explore the possibility of 
using another kind of experimental constraints ― a small set of pair-wise distance constraints as 
a guide to probe protein conformational changes. 
 
Experimentally, pair-wise distances between specified atoms of a protein in its native state (in 
solution) can be obtained by nuclear magnetic resonance (NMR). There are other techniques that 
utilize fast spectroscopy (for example: site-direct spin labeling combined with electron 
paramagnetic resonance spectroscopy, see Hubbell et al., 2000) to probe pair-wise distances of a 
protein in a transient state. Computationally, it has been well known that even a small number of 
pair-wise distance constraints can improve the protein structure modeling significantly (Skolnick 
et al. 1997, Debe et al., 1999). In the framework of ENM, since functionally relevant 
conformational changes generally involve a small number of low-frequency normal modes, it is 
natural to expect that a small number of pair-wise distance constraints, if chosen properly, would 
be sufficient for obtaining a good approximation to the conformational changes. 
 
Technically, in the framework of NMA the distance constraints can be either enforced directly as 
‘hard’ constraints or incorporated indirectly as ‘soft’ constraints: 
1. The ‘hard’ constraints are enforced by first linearizing the constraints at the lowest order 
perturbation and then solving the resulting linear equations (see Method): for N pair-wise 
distance constraints, a linear combination of the N or more lowest-frequency normal modes is 
solved to satisfy them. Although this method appears to be mathematically sound, it lacks 
physical basis because the N low-frequency modes are treated equally regardless of their 
differences in frequency.  
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2. The ‘soft’ constraints can be incorporated into a quadratic perturbation to the system 
Hamiltonian, and then the response displacement is computed (see Method). The physical 
essence of this method is: by exerting forces to the few chosen pairs of residues to force them to 
approach the desired distance constraints, such local perturbation is propagated to the whole 
structure to eventually induce global conformational changes which are biologically relevant 
(Zheng and Doniach, 2003). The above perturbation may be physically driven, for example due 
to ligand binding or interaction with other proteins (such an inhibitor). Compared with the ‘hard’ 
constraints based method, this method employs the linear-response theory that naturally favors 
lower frequency over higher frequency modes (see Method).  
 
We will use the above ‘soft’ constraints based method to computationally predict the 
conformational changes. We will test this method on a list of test cases to evaluate its 
performance in terms of both accuracy and robustness.  
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Materials and Methods 
 
1. Elastic network model: 
 
Given the Cα atomic coordinates for a protein’s native structure, we build an elastic network 
model by using a harmonic potential with a single force constant to account for pair-wise 
interactions between all Cα atoms that are within a cutoff distance (RC=10Å). The energy in the 
elastic network representation of a protein is: 
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where dij is the distance between the dynamical coordinates of the Cα atoms i and j, and d0ij is the 
distance between Cα atoms i and j, as given in the crystal structure.  
 
For the above harmonic Hamiltonian we can perform the standard normal modes analysis (NMA), 
and using the eigenvectors of the lowest frequency normal modes (starting from mode #1 after 
excluding the 6 zero modes for translations and rotations) we can compute the overlaps with the 
conformational changes between two states with known structures (Zheng and Doniach, 2003). 
The drastic simplification of representing the complex protein structure by an effective harmonic 
potential is justified by a study (Tiron, 1996) which showed that a single spring constant potential 
reproduces the slow dynamics that is computed from the normal modes analysis of a complex all-
atom potential. 
 
We note that the cutoff distance RC=10Å is selected as a trade-off between the following two 
considerations: first, RC should be large enough to avoid additional zero modes besides the 6 
rotational and translational modes; second, RC should be small enough to avoid introducing too 
much non-physical long-range interaction. In practice, we find similar results for slightly 
different cutoff distances (data not shown).  
 
2. Predict conformational changes from distance constraints 
 
Motivation 
 
Assume we have the 3d coordinates of the initial protein structure’s Cα atoms, and N pair-wise 
distance constraints for the unknown end structure. The goal is to predict the conformational 
change from the initial structure to the end structure. Here we limit our attention to the 
directionality of the conformational change (a 3L dimensional vector where L is the length of 
sequence) but not its amplitude. 
 
There are two different ways to achieve this goal: 
 
a. Hard distance constraints:  
 
One can use the linear combination of M lowest-frequency modes to satisfy N linearized pair-

wise distance constraints ( nn ji , ) (n=1, 2…N): 
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where nn ji
mR ,δ is the perturbational change of the pair-wise distance for (nn ji , ) caused by the 

eigenvector of mode m; 
nn jir ,δ is the change of the pair-wise distance for (nn ji , ) derived from the 

given distance constraint. 
 
In order to satisfy N independent constraints as in Eq (2), M should be no less than N. If N is 
equal to M, there is only one solution to Eq (2); when M>N, there will be multiple solutions   
 
Our tests have showed that the direct satisfaction of the ‘hard’ distance constraints (M=N) often 
results in poor overlap between the computed displacement by Eq (2) and the measured one (see 
Table 2). 
 
b. Soft distance constraints: 
   
We incorporate the constraints into a perturbation to the Hamiltonian, and then compute the 
response displacement induced by this perturbation. Details are shown as follows. 
 

First, we introduce N pair-wise distance constraints (nn ji , ) (n=1,2…N) as a perturbation to the 
Hamiltonian of the elastic network:  
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where the perturbational Hessian matrix δH and the force vector δF are computed as follows: 
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the old structure ( mω : the eigenvalue of mode m, nn ji
mR ,δ : the perturbational change of the pair-
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structure. 
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Second, the response displacement x  induced by the above perturbation (Eδ ) at 2nd order 
approximation is computed as follows: 
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where H0 is the Hessian matrix for the unperturbed ENM. In practice, we find: 1st order 
approximation ( FHx δ10

−−≈ ) is generally as accurate as 2nd order (adding 2nd order term makes 

little difference). The factor of H0
-1 favors low-frequency modes in their contribution to x . 

 
It is straightforward to verify the following: under the assumption of linear response, the 
contribution to the energy perturbation in Eq (3) from each individual pair-wise constraint, by 
itself, results in the change of that pair-wise distance that satisfies the constraint perturbationally. 
However, when all contributions are added up, none of those constraints are satisfied any more. 
So the basic assumption is: every pair-wise constraint can be enforced by a pair-wise force 
applying on that particular pair ‘independently’, and the inter-pair interference can be ignored 
(for example, one can ignore the change in the pair-wise distance for pair 2 caused by the forces 
applied on pair 1). The inter-pair interference can be taken into account by tuning the eff

ji nn
k , as 

variables to satisfy the constraints exactly and meanwhile minimize the energy in Eq (5). 
However, our test of such alternative method (data not shown) showed, surprisingly, significantly 
degraded performance. We suspect that the inter-pair interferences are probably much weaker in 
real proteins than described by the ENM. 
 
The response displacement as computed above is used as an approximation to the conformational 
change. Its accuracy can be assessed by calculating its overlap with the measured conformational 
change (generalized Cosine between these two vectors, see Tama and Sanejouand, 2001): the 
higher the overlap is, the more accurate the prediction will be. 
 
3. Criteria for selecting residue pairs:  
 
Pair-wise distance constraints can be experimentally retrieved by a variety of techniques. 

Intuitively, only residue pairs with significant change of distance (δd= newr - oldr ) during the 

transition will be useful for predicting the conformational changes. Therefore the selection 
criteria are needed before the method can be tested. Here for the purpose of testing cases for 
which both crystal structures are known, we use the following criteria: 

i. The pair-wise distance jumps across the cutoff distance 10Å during the transition, 
which results in breaking of an old bond of spring or generation of a new bond of 
spring in the elastic network; 

ii. There is relatively significant change in the pair-wise distance  (|δd|) during the 

transition: the significance is assessed by a Z score: 
||

||

||||

d
d
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Z

δ
δ σ
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those with Z|δd|>1; 
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In summary, we select those residue pairs that satisfy the above two conditions and keep them as 
a pool of pair-wise distance constraints for further testing. The pair-wise distance constraints used 
for the later testing can only be obtained from this pre-generated pool. Of course, in practice, 
when only the initial crystal structure is known, this pool of pair-wise distance constraints is 
obtained by experiments. 
 
4. Test protocol: 
 
We propose the following two procedures to test the accuracy and robustness of the method: 
 
a. Ideal test:  
 
We use the top N residue pairs (ranked by the pair-wise distance change |δd|) as the input of 
distance constraints (N=1, 2, …, 10), then we compute the response displacement and its overlap 
with the measured conformational change to assess the performance.  
 
We define the success criteria as follows: A test case is said to successfully pass the ideal test if 
there exists N≤10 such that using the top N pairs as input results in a higher or similar overlap 
with the measured conformational change than any single mode.  
 
 
b. Non-ideal test: including the following two tests 
 

Test 1: We randomly pick N pairs from the pool of significant pairs as generated above. For a 
given N (N=1, 2, …, 10), we repeat the calculation 100 times with different randomly 
selected N pairs and then compute the average and standard deviation of the computed 
overlaps. The average assesses the average performance while the standard deviation gives 
the robustness of the method.  
 
Test 2: We introduce a random fractional error (following the uniform distribution between –
50% and 50%) to the new pair-wise distance values. For a given input of top N pair-wise 
constraints, we repeat the calculations 100 times with different inaccurate values of distance 
constraints and then compute the average and standard deviation of the overlaps. The average 
assesses the average performance while the standard deviation gives the robustness of the 
method. 

 
We define the success criteria as follows: A test case is said to successfully pass the non-ideal 
tests if there exists N≤10 such that: a. the average overlaps obtained from the above two tests are 
both higher than or similar to the maximal overlap between the measured conformational change 
and any single mode; b. the standard deviation is much smaller than the average overlap. 
 
5. Test cases 
 
We test this method for a list of protein pairs with both structures available in PDB. 14 pairs in 
the list are obtained from a recent study (Tama and Sanejouand, 2001): we only exclude 4 pairs 
for reasons such as the lack of dominance of low-frequency modes among the lowest 10 modes. 
We then supplement by 8 additional pairs of proteins from our own studies. 
 



 9

Results and Discussion 
 
We now perform a systematic test of the accuracy and robustness of the method. For the test 
cases, we select a list of protein transition pairs where both the initial and the end structures are 
available in Protein Data Bank (Table 1). These proteins vary significantly in size and function, 
and their conformational changes involve hinge bending or shear motion (as classified in Gerstein 
and Krebs, 1998). The diversity of the test cases facilitates a strict test on the generality of the 
method. 
 
For the purpose of method testing, we generate a pool of ‘useful’ pair-wise distance constraints 
(see Method), and we require that the pair-wise distance constraints as input to our method can 
only come from this ‘pre-generated’ pool.  
 
Then we run the following two tests: 
 
1. Ideal test:  
 
To demonstrate the best performance this method can offer, assume we are given the top N pairs 
(sorted by |δd|: the pair-wise distance change during the transition) from the pool as the input of 
distance constraints (N=1, 2, … 10). For those top N pair-wise constraints, we compute the 
response displacement as defined in Eq (5), and then calculate its overlap with the measured 
conformational change. We compare it with the maximal overlap between any single mode and 
the measured conformational change. We then ask the following two questions to assess the 
performance: 1. What is the minimum N needed to get a similar or higher overlap than any single 
mode? 2. What is the highest overlap attained as N varies from 1 to 10. We record these two 
numbers in Table 2 for all the test cases.  
 
A test case is said to successfully pass the ideal test if our method obtains a better or similar 
performance than any single mode (see Method for details of the success criteria).  
 
2. Non-ideal test:  
 
We design the following two non-ideal tests to assess the robustness of our method: 
 
a. In practice, there is no guarantee that we can get precisely the top N pair-wise distance 
constraints from the pre-generated pool as assumed in the ideal test. So it is natural to ask 
whether the performance is sensitive to different choices of pair-wise distance constraints from 
the pool as input. To address this question we randomly pick N pairs from the pool of significant 
pairs and evaluate statistically the performance of the method (Method). For a given N (N=1, 
2, … 10), we repeat the calculation with different randomly selected N pairs and then compute 
the average and standard deviation of the computed overlaps. The average assesses the average 
performance while the standard deviation gives the robustness of the method. These results are 
also recorded in Table 2. 
 
b. Another practical issue is that the experimentally measured pair-wise distances for the end 
state are inaccurate. Therefore it is critical to test if our method is robust against such inaccuracy. 
We introduce a random fractional error (Method) to the new pair-wise distance values. For a 
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given input of top N pair-wise constraints (defined in the ideal test), we repeat the calculations 
with different inaccurate values of distance constraints and then compute the average and 
standard deviation of the overlaps. The average assesses the average performance while the 
standard deviation gives the robustness of the method. These results are also recorded in Table 2. 
 
A test case is said to successfully pass the non-ideal tests if our method ‘statistically’ obtains a 
better or similar performance than any single mode (see Method for details of the success criteria).  
 
Then we go into a detailed discussion of the results. To clearly analyze the results, we classify the 
22 test cases into the following three categories:  
 
1. Successful cases with single mode dominance  
 
Among the test cases that successfully pass both the ideal and non-ideal tests, for 12 of them (see 
the upper part of Table 2 for details) there is a single mode that dominates the measured 
conformational change. Among these 12 cases, only 3 are dominated by precisely the lowest-
frequency mode (mode #1) and 4 by the 2nd lowest-frequency mode (mode #2); the remaining 5 
have their dominant mode ranging from mode #3 to #6 (Table 2). Therefore, even for cases with 
single mode dominance, a simple choice of the dominant mode based solely on lowest frequency 
is generally not feasible.  
 
For example, the transition (1ddt �1mdt) is dominated by mode #2 (overlap=0.564). In both the 
ideal and non-ideal tests, our method captures mode #2 as the dominant mode (see Figure 2. The 
non-ideal test with different choices of input pairs reveals high robustness with slightly reduced 
performance (average overlap ~ 0.7, and standard deviation ≤0.1). It is noted that the robustness 
against errors in the input distance constraints is very strong: for N=1…10 pairs, the standard 
deviation is virtually zero. 
 
 
Similar results are obtained for the other two examples: (1ypt � 1yts, see Figure 3) and 
(2lao�1lst, see Figure 4). In both transitions, both non-ideal tests reveal very robust performance 
(small standard deviation). 
 
To summarize, for the 12 successful cases with single mode dominance we find that our method 
correctly captures the dominant mode that also dominates the predicted conformational change 
and thus achieves a comparable or better performance than any single mode alone. Depending on 
different cases, although the non-ideal test gives somewhat reduced performance (with more pairs 
needed) than the ideal test, it is generally robust and the results are not sensitive to the choices of 
pairs from the pool and the accuracy of the input distance constraints. The robustness against the 
latter is particularly impressive: in 11/12 cases, the standard deviation is << 0.1 (except for 
transition 1avr �1avh).   
 
2. Successful cases with multi-modes dominance 
 
Among the test cases that successfully pass both the ideal and non-ideal tests, for 5 of them (see 
the lower part of Table 2) there are two modes that dominate the measured conformational 
change.  
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We discuss these cases in details as follows. 
 
Transition (9aat � 1ama) is dominated by mode #6(overlap=0.515) and #7(overlap=0.459). In 
the ideal test, our method (with ≥4 pairs as input) can capture mode #6 as the dominant mode 
together with mode #1. This is not surprising because mode #1 has frequency (0.000326) is much 
lower than mode #6 (0.057652) which favors its presence in the response displacement. The non-
ideal test reveals reasonable robustness with different choices of pairs as input (average overlap 
~0.5, standard deviation ≤0.15 for N≥4 pairs). The robustness against errors in the input distance 
constraints is relatively strong (for N=1…10 pairs, the standard deviation is always ≤0.1) 
 
Transition (1cll � 1ctr) is dominated by three modes: #3(overlap=0.374), #4(overlap=0.380) and 
#5(overlap=0.405). Our method captures mode #3 as the dominant and #4 as sub-dominant mode 
(see Figure 1). This explains its high overlap of 0.69 with the measured conformational change. 
The non-ideal test with different choices of pairs reveals good robustness with slightly reduced 
performance (average overlap ~ 0.5, and standard deviation ≤0.1). It is noted that the robustness 
against errors in the input distance constraints is extremely strong: for N=1…10 pairs, the 
standard deviation is always <0.003. 
 
Transition (1omp � 1anf) is dominated by mode #2(overlap=0.675) and #1(overlap=0.650). Our 
method correctly captures mode #2 as dominant mode and mode #1 as subdominant mode. The 
non-ideal test with different choices of pairs offers almost as good performance as the ideal test 
(average overlap ~0.8, and standard deviation ≤0.2) for ≥4 pairs as input. It is noted that the 
robustness against errors in the input distance constraints is also very strong: for N=1…10 pairs, 
the standard deviation is always <0.02.     
 
Transition (1dfl � 1kk7) is dominated by mode #1(overlap=0.518) and #3(overlap=0.475), both 
of which are correctly captured as dominant or subdominant mode by this method. The non-ideal 
test with different choices of pairs as input reveals slightly reduced performance than the ideal 
test and good robustness (average overlap ~0.5-0.6, standard deviation ≤0.2) for N≥5 pairs. The 
robustness against errors in the input distance constraints is relatively strong (for N=1…10 pairs, 
the standard deviation is always ≤0.1).      
 
Transition (1vom � 1mma) is dominated by mode #1(overlap=0.558), and #2(overlap=0.371). 
Both modes are captured by our method as dominant or subdominant modes. The non-ideal test 
with different choices of pairs as input reveals somewhat reduced performance than the ideal test 
and reasonable robustness (average overlap ~0.5-0.6, standard deviation ≤0.2) for N≥5 pairs. The 
robustness against errors in the input distance constraints is very strong (for N=1…10 pairs, the 
standard deviation is always ≤0.01).      
 
To summarize, in the above 5 successful cases our method correctly captures one or both of the 
dominant modes that also dominates the predicted conformational change and thus achieves a 
comparable or better performance than any single mode alone. Although the non-ideal test gives 
somewhat reduced performance than the ideal test (with more pairs needed and a small variation 
in the overlap), it is generally robust and the results are not sensitive to the choices of pairs from 
the pool and the accuracy of the input distance constraints. The robustness against the latter is 
particularly impressive. 
 
3. Unsuccessful cases 
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There are 5 unsuccessful cases that are discussed as follows: 
 
Transition (8adh � 6adh): there is a dominant mode #3 (overlap=0.68); and the ideal test gives 
reasonable performance (although the overlap 0.56 is lower than 0.68 of mode #3); and the non-
ideal test gives reduced performance with good robustness against both the choices of pairs from 
the pool and the inaccuracy of the input distance constraints. Therefore this case is actually 
partially successful. 
 
Transition (3enl � 7enl): there is a weakly dominant mode #1(overlap=0.345). We obtain good 
ideal test result but worse non-ideal test result although with good robustness.   
 
In the remaining 3 cases (including: 4dfr � 5dfr, 1hhp � 1ajx, and 1hil � 1him) the ideal test 
result is good but the non-ideal test fails to give robust results (the standard deviation is 
comparable to the average overlap): namely, the performance is sensitive to either the choices of 
pairs or errors of distance constraints or both. We note that the size of the pool of significant pairs 
is relatively small for these 3 cases, which may result in relatively strong susceptibility to the 
contribution of each individual pair and therefore cause weak robustness. Indeed, for the 
transitions 1hhp � 1ajx and 1hil � 1him, when we enlarge the pool size the robustness is 
significantly improved (data not shown).   
 
Summary 
 
As indicated by the results of the ideal test (Table 2), for most of the test cases (21 out of 22), by 
using just a small number (≤10) of pair-wise distance constraints, we have obtained a good 
overlap between the computed conformational change and the measured one, which is higher 
than (or close to) the maximal overlap between any single mode and the measured one. In 
particular, in cases where more than one normal mode dominate, the predicted conformational 
change can correctly capture all or some of the dominant modes and give a better overlap than 
any single mode. We also find that increasing number of constraints generally does not 
significantly improve the overlap values.   
 
The results of the non-ideal test are also encouraging: for most of the test cases (17 out of 22), 
slightly more constraints are needed to match the performance of the ideal test, and the 
robustness against different choices of pairs of constraints and errors in the values of distance 
constraints is generally strong. The dependence on the number of constraints is stronger than in 
the ideal test: the average overlap improves and the variance of the overlap decreases as more 
constraints are used. Therefore, for practical use of this method, we need to use slightly more 
constraints than suggested by the ideal test, which improves not only the average performance but 
also the robustness.  
 
It is noted that the dependence on the accuracy of distance constraints is very weak for most of 
the test cases even for a relative large fractional error (up to 50%). This is critical to the practical 
application of this method with experimentally derived distance constraints that are usually of 
limited accuracy.  
 

Conclusion 
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In conclusion, we have developed an ENM-based method that predicts the conformational 
changes of a protein complex given the initial state crystal structure together with the input of a 
small set of pair-wise distance constraints for the end state. The predicted conformational change, 
which is a linear combination of multiple low frequency normal modes, is computed as a 
response displacement induced by a quadratic perturbation to the Hamiltonian of the elastic 
network that incorporates the given distance constraints. For most of the test cases we studied, we 
find that the computed response displacement overlaps well with the measured conformational 
change, when only a handful of pair-wise constraints (≤10) are used; in several cases even a 
single constraint has already yielded very good results. This method generally performs better 
than using any single normal mode, especially in cases where more than one mode dominate the 
transition. The robustness of the method against different choices of residue pairs and errors in 
the values of distance constraints has also been shown to be fairly strong. 
 
The success of this method lends support to the critical roles of collective low-frequency motions 
in facilitating bio-molecular functions. The easy and accurate triggering of such collective 
mode(s) by manipulating just a small number of interacting pairs of residues may be essential to 
the mechanism of allostery initiated by ligand binding or protein-protein interactions. 
 
Compared with other computational methods that utilize the distance constraints to model protein 
structures (for example, using molecular dynamics simulation with additional energy terms from 
the constraints, as implemented in CHARMM by Brooks et al. 1983), this method has the 
following advantages: first, its implementation is fast and easy; second, it is free from any 
trapping in local minima; third, it is applicable to large protein complexes. Furthermore, the 
conformational change predicted by this method can serve as a zero-order approximation that can 
be further refined by more sophisticated methods (for example, using dynamical simulations 
based on all-atom potentials).  
 
Before ending, we acknowledge that there is limitation and inaccuracy in the ENM and there 
exist some protein conformational changes that cannot be described by the low-frequency normal 
modes (for example, some local structural changes). However, the basic idea proposed here is not 
limited to the ENM and it can be applied to the normal modes analysis of other force fields like 
the all-atom potentials.  
 
For future work, we will apply this method with the experimentally derived distance constraints 
(for example, from NMR or other optical spectroscopy probes) to the analysis of protein 
conformational changes toward transient states that are difficult to capture by NMR or X-ray 
crystallography. 
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Tables and figure captions 
 
Table 1. Information about the 22 pairs of protein structures as test cases: the PDB codes of the 
corresponding pair of initial and end crystallographic structures. 
 
Protein names            # residues PDB codes 
 
Alcohol dehydrogenase       373 8adh, 6adh     
Annexin V                   317 1avr, 1avh     
Aspartate aminotransferase 401 9aat, 1ama     
Calmodulin                   144 1cll, 1ctr        
Dihydrofolate reductase       159 4dfr, 5dfr     
Diphtheria toxin             523 1ddt, 1mdt     
Enolase                   436 3enl, 7enl     
HIV-1 protease              99 1hhp, 1ajx     
Immunoglobulin             418 1hil, 1him     
Lactoferrin                   691 1lfh, 1lfg     
LAO binding protein       238 2lao, 1lst     
Maltodextrin binding protein 370 1omp, 1anf        
Thymidylate synthase       264 3tms, 2tsc     
Tyrosine phosphatase       278 1ypt, 1yts    
Scallop myosin s1             772 1dfl, 1kk7 
dictyostelium myosin       730 1vom, 1mma    
bacillus DNA polymerase       580   1l3s, 1lv5 
DNA polymerase beta           331   1bpx, 1bpy 
rb69 DNA polymerase           897   1ih7, 1ig9 
Taq DNA polymerase            528   2ktq, 3ktq 
ras p21 protein               169   4q21, 5p21 
Transducin-alpha              314   1tag, 1tnd 
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Table 2. Summary of results from both ideal and non-ideal tests. For each test case, the first row 
shows the minimal number of pairs needed to match the maximal overlap between any single 
mode and the measured conformational change; the second row shows the number of pairs when 
the maximal overlap between the computed and the measured conformational changes is obtained. 
For the two non-ideal tests, both the average overlap and its standard deviation (inside 
parenthesis) are shown. For the ideal test, the third row shows the corresponding result for the 
‘hard constraint’ method as a comparison. 
 

PDB codes      mode#(overlap)  pool ideal test result         non-ideal test result 
     size #pairs overlap         test 1                test 2 
                                                                   #pairs  overlap       #pairs overlap  
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8adh  6adh      #3(0.680)       49 - -  - -   -      - 
     10 0.564    8 0.622(0.100)  10     0.528(0.081) 
     4 0.300 
1avr  1avh      #2(0.412)       14 2  0.538  9 0.423(0.134)  -      - 
     3  0.550  9 0.423(0.134)  1      0.406(0.000) 
     3 0.455 
4dfr  5dfr      #1(0.611)       9  - -  - -   -      - 
     2 0.588  9 0.390(0.000)  3      0.297(0.308) 
     1 0.612 
1ddt  1mdt      #2(0.564)       147  1 0.640  2 0.607(0.067)  1      0.640(0.000) 
     7 0.650  9 0.646(0.011)  7      0.650(0.000) 
     2 0.421 
3enl  7enl      #1(0.345)       49  1 0.499  8 0.366(0.107)  1      0.499(0.000) 
     10 0.500  8 0.366(0.107)  10     0.500(0.003) 
     1 0.346 
1hhp  1ajx      #3(0.70)        6  1   0.784  - -   -      - 
     1   0.784  5  0.187(0.069)  1      0.517(0.589) 
     1 0.068 
1lfh  1lfg      #1(0.613)       62  1 0.671  5  0.620(0.236)  1      0.671(0.000) 
     8  0.882  10 0.737(0.170)  10     0.867(0.025) 
     4 0.663 
2lao  1lst      #1(0.886)       40  1  0.932  1  0.918(0.028)  1      0.932(0.000) 
     3  0.942  10 0.937(0.006)  3      0.942(0.000) 
     3 0.920 
3tms  2tsc      #4(0.503)       15  4  0.563  2  0.536(0.133)  4      0.556(0.040) 
     7  0.664  10 0.648(0.025)  7      0.637(0.043) 
     1 0.438 
1ypt  1yts      #6(0.470)      23  1  0.662  1  0.626(0.117)  1      0.662(0.000) 
     9 0.759  10  0.756(0.020)  9      0.754(0.014) 
     1 0.383 
1l3s  1lv5      #5(0.696)      56 5  0.704  - -   5      0.695(0.044) 
     7 0.719  10 0.633(0.174)  7      0.710(0.026) 
     6 0.103 
1bpx  1bpy      #1(0.710)       31 1  0.755  3 0.756(0.103)  1      0.755(0.000) 
     7  0.759  10 0.807(0.038)  8      0.759(0.001) 
     1 0.711 
1ih7  1ig9      #2(0.804)       82 1  0.815  3  0.809(0.110)  1      0.815(0.000) 
     5  0.817  10 0.874(0.017)  5      0.817(0.000) 
     1 0.058 
2ktq  3ktq      #4(0.504)       40  1  0.755  4  0.564(0.295)  1      0.755(0.000) 
     10 0.790  10 0.710(0.167)  10     0.786(0.024) 
     1 0.116 
4q21  5p21      #2(0.494)       29 1  0.579  8  0.499(0.109)  2      0.590(0.047) 
     10 0.660  10 0.515(0.091)  9      0.615(0.061) 
     3 0.191 
1tag  1tnd      #3(0.385)       49 1  0.478  3  0.405(0.185)  1      0.478(0.000) 
     9  0.531  10 0.572(0.096)  9      0.526(0.012) 
     2 0.217 
 
 
9aat  1ama      #6(0.515)    37 4 0.545  - -   -      - 
   #7(0.459)  8 0.604  9 0.505(0.153)  8      0.491(0.100) 
     5 0.210 
1cll  1ctr      #5(0.405)      28 1 0.695  1 0.484(0.119)  1      0.695(0.000) 
   #4(0.380)  1 0.695     8 0.578(0.057)  1      0.695(0.000) 
     2 0.313 
1hil  1him      #4(0.598)       13  1 0.684  10  0.664(0.198)  -      - 
   #1(0.460)  6 0.809  10  0.664(0.198)  8      0.479(0.384) 
     1 0.477 
1omp  1anf      #2(0.675)       60  1  0.711  3  0.765(0.184)  1      0.711(0.000) 
   #1(0.650)  8  0.861  10 0.862(0.069)  8      0.857(0.010) 
     2 0.823 
1dfl  1kk7      #1(0.518)       102 1 0.638  5 0.516(0.217)  1      0.638(0.000) 
   #3(0.475)  10 0.813  10 0.657(0.109)  10     0.800(0.015) 
     1 0.518 
1vom  1mma      #1(0.558)       89 1  0.734  7  0.561(0.172)  1      0.734(0.000) 
   #2(0.371)  2  0.752  10 0.618(0.086)  2      0.752(0.001) 
     2 0.674 
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Figure 1. Summary of results for transition (1cll � 1ctr). Panel a shows the overlap between the 
computed and the measured conformational changes vs. the number of pair-wise distance 
constraints. Panel b (panel c) shows the overlap between the computed conformational change and 
mode #3 (#4) vs. the number of pair-wise distance constraints. Line with pluses: result for the ideal 
test; horizontal line: the maximal overlap between any single mode and the measured 
conformational change; x-marks with error bars: result for the non-ideal test 1, where the error bar 
shows 1 standard deviation. 
 
Figure 2. Summary of results for transition (1ddt � 1mdt). Panel a shows the overlap between the 
computed and the measured conformational changes vs. the number of pair-wise distance 
constraints. Panel b shows the overlap between the computed conformational change and mode #2 
vs. the number of pair-wise distance constraints. Line with pluses: result for the ideal test; 
horizontal line: the maximal overlap between any single mode and the measured conformational 
change; x-marks with error bars: result for the non-ideal test 1, where the error bar shows 1 
standard deviation. 
 
Figure 3. Summary of results for transition (1ypt � 1yts). Panel a shows the overlap between the 
computed and the measured conformational changes vs. the number of pair-wise distance 
constraints. Panel b shows the overlap between the computed conformational change and mode #6 
vs. the number of pair-wise distance constraints. Line with pluses: result for the ideal test; 
horizontal line: the maximal overlap between any single mode and the measured conformational 
change; x-marks with error bars: result for the non-ideal test 1, where the error bar shows 1 
standard deviation. 
 
Figure 4. Summary of results for transition (2lao � 1lst). Panel a shows the overlap between the 
computed and the measured conformational changes vs. the number of pair-wise distance 
constraints. Panel b shows the overlap between the computed conformational change and mode #1 
vs. the number of pair-wise distance constraints. Line with pluses: result for the ideal test; 
horizontal line: the maximal overlap between any single mode and the measured conformational 
change; x-marks with error bars: result for the non-ideal test 1, where the error bar shows 1 
standard deviation. 
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